
Percolation processes in two dimensions. V. The exponent δp and scaling theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 1109

(http://iopscience.iop.org/0305-4470/9/7/014)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen.. Vol. 0. No. 7. 1076. Printed in Great Britain. 0 1076 
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Abstract. By introducing a notional field variable A into the percolation problem, a function 
Pc(A) is defined whose Ising analogue is the magnetic field variation of the magnetization 
along the critical isotherm. Series expansions are used to study the critical behaviour of 
Pc(A), characterized by an exponent 6,, for both site and bond percolation problems on the 
more common two-dimensional lattices. We conclude that 6, is a dimensional invariant and 
estimate 6,= 18.0~t0.75. 

It appears that 6, = 18, yp = 25, /3, = $ is the simplest set of rational exponents which is 
most consistent with the available data and which satisfies the scaling law yp = /3,(6,- 1) 
exactly. 

1. Introduction 

In this paper we report numerical studies on the critical exponent S ,  (defined below) for 
bond and site percolation processes on various two-dimensional lattices and compare 
the result with that obtained from the scaling laws (Kasteleyn and Fortuin 1969, Essam 
and Gwilym 1971, Essam 1972, Dunn er a1 1975a). There is a close formal analogy 
(Kasteleyn and Fortuin 1969, Essam 1972) between percolation processes and the 
ferromagnetic Ising model and we assume a general familiarity with both these 
problems such as may be derived from the reviews by Shante and Kirkpatrick (1971) 
and Essam (1972) for the one and by Fisher (1967) and Domb (1974) for the other. We 
have introduced the two-dimensional problem, defined the notation, derived new data 
and analysed series expansions for the mean cluster size and percolation probability in 
previous papers (Sykes and Glen 1976, Sykes etal 1976a, b, c referred to as I, 11,111, IV 
respectively). 

As the notation suggests, the percolation exponent 6, will be defined in such a way 
that its ferromagnetic analogue S describes the shape of the critical isotherm (Gaunt 
1967, Gaunt and Sykes 1972). More specifically, we begin with the expansion for the 
mean number of finite clusters which, following I, can be written 

where p is the probability of occu ation of the lattice sites (site problem) or bonds (bond 
problem), q = 1 - p  and A = .-‘is a notional field variable normally set to A = 1 
corresponding to zero field (5 = 0). (Alternatively, a field variable may be introduced in 
a quite natural way by considering percolation theory as the low temperature limit of a 
dilute king model in an external magnetic field (Dunn et al 1975a).) Os is a polynomial 
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in q, the coefficient of q' being the number of clusters per site or bond of the lattice of 
size s with perimeter t. The analogous expansion for a ferromagnetic Ising model is the 
high-field expansion of the configurational free energy (Sykes et a1 1965) 

a 

l n A =  Ls(u)ps, (1.2) 
s = l  

where U and p are the usual low temperature and magnetic field variables, respectively. 
Here the coefficient of U' in the polynomial Ls(u) arises from configurations of s 
overturned spins having Ising perimeter t. Evidently, A is the analogue of p (see also 111) 
and p the analogue of U or the temperature T, with p < pc equivalent to T >  T,, and vice 
versa. Furthermore, it is clear on considering the appropriate derivatives of (1.1) and 
(1.2) with respect to A and p, respectively, and then setting A = 1 and p = 1, that the 
mean size of finite clusters and the percolation probability are analogous to the initial 
susceptibility and spontaneous magnetization, respectively, of the ferromagnet. For 
example, evaluating the magnetization (Sykes et a1 1965) 

M(u, p )  = 1 -2p(d In A/dp) (1.3) 

at p = 1 gives the spontaneous magnetization, while evaluating 

i a  
P(p ,  A )  = 1 --A--K(p, A )  

P 
(1.4) 

at A = 1 gives the percolation probability (Essam and Gwilym 1971). To define the 
exponent S in the ferromagnetic case, the magnetization must be evaluated along the 
critical isotherm U = uc, the basic p-expansion (Gaunt and Sykes 1972) 

following from (1.2) and (1.3). At the critical point, it is assumed that 

Mc(CL)-E(l -p)I '* ,  ( T =  Tc, p-, 1-17 (1.6) 

to leading asymptotic order, which defines the critical exponent 6 and critical amplitude 
E. Treating the percolation problem in an analogous way involves the evaluation of 
P(p ,  A )  at p = pc ,  (1.1) and (1.4) giving the basic A -expansion 

which is assumed to exhibit a dominant critical point singularity of the form 

PJA)--E~(I--A)''*P, ( P = P c ,  A + 1-1. (1.8) 

To derive the expansion (1.7) correct to order A N  requires a knowledge of pc and the 
perimeter polynomials D1, Dz, . . . DN. These polynomials were derived in I, and are 
known through N =  9 T(B), 13 SQ(B), 17 HC(B), 14 T(s), 17 SQ(S), 11 SQM(S), 20 HC(S) 
and 9 HCM(S). For all the bond problems as well as the T(S) problem, we have used the 
exact value of pc (Sykes and Essam 1964); for the site problems on the square and 
honeycomb lattices and their corresponding matching lattices, the best numerical 
estimate of II has been used. 
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2. Series analysis 

All the standard techniques of series analysis reviewed by Gaunt and Guttmann (1974) 
have been employed in studying P&). The best results are those obtained from the 
expansion coefficients m, of the logarithmic derivative - A(d/dA) In P,(A), which 
according to (1.8) should approach 1 /6, as n -* 00. (Note that the analogous method of 
analysing the corresponding Ising problem proves to be the best in that case also (Gaunt 
and Sykes 1972).) Extrapolating these against l /n  gives the ‘appropriate extrapolants’ 
e, which are plotted against n in figure 1. The ‘appropriate extrapolants’ have been 
defined previously (Gaunt and Sykes 1972); in most cases they are simply the linear 

1 0 055 I 

n 

Figure 1. Appropriate extrapolants e, plotted against n 

intercepts calculated from adjacent points but for the HC(B) and HC(S) problems which 
exhibit apparent periodicities of 4 and 3, respectively, the oscillations are smoothed-out 
by a suitable averaging procedure. The uncertainty in pc (when the exact value is not 
available) introduces an uncertainty in the last extrapolant of about f 0.005, corres- 
ponding to an uncertainty in 8, of about f 2. 

The extrapolants appear to be increasing slowly and monotonically as n increases 
and assuming this trend continues the last point on each curve provides an upper bound 
on 6, for that particular problem. If we further assume, as seems reasonable, that 6, is a 
dimensional invariant then the plots must have a common limit and from the HC(B) 
problem we obtain our best upper bound of 6,< 18.75. From an essentially subjective 
assessment of the rate of increase of the extrapolants, we think a limit close to 6, = 18 
does not seem unreasonable. Accordingly we adopt as our best estimate 

6, = 18*0*0*75. (2.1) 
With regard to alternative methods of analysis, Pad6 approximants to the series for 

(A - l)(d/dA) In P,(A) evaluated at A = 1 provide further support for a value in this 
vicinity. The sequences in table 1 are for the T(B) and T(S) problems and are fairly 
typical. The estimates appear to be converging from above to a limit close to (2.1). The 
ratio method is also in general agreement with these conclusions although convergence 
appears to be disappointingly slow. 
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Table 1. Estimates of 6,  for the T(B) and T(S) problems provided by the [ n  + j / n ]  Pad6 
approximants to the ( A  - l)(d/dA) In P,(A) series evaluated at A = 1.  

T(B) T(S) 

n [n - l /n ]  [n/n] [ n + l / n ]  [ n  - l / n I  [ d n l  [n + l / n l  

1 32.56 13.79 26.06 31.00 24.76 25.67 
2 23.41 24.16 23.32 25.59 25.05t 22.93 
3 23.83 57.41t 19.09 20.84 21.93 20.86 
4 19.74 22.77 21.57 20.80 20.89t 
5 20.54 18.42 19.95 
6 19.81 10.97 19.95$ 
7 1946$ 

t Defect on positive axis. $ Defect on negative axis. 

To study the relatively slow convergence further, we have formed Pad6 approxi- 
mants to the (d/dA) In Pc(A) series. These reveal on the real axis for A > 1 ,  a pole-zero 
sequence characteristic of a coincident singularity modifying the dominant asymptotic 
behaviour ( 1  3) to 

Pc(A)-E,(l -A)”’p[ l -F , ( l  -A)&] ,  (g, > 0). (2.2) 
An analogous modification of (1.6) occurs for the simple king ferromagnet (Gaunt and 
Sykes 1972). It is to be supposed that this presumed confluence is responsible in general 
for the slow rate of convergence, since with the exception of the HC(B) and HC(S) 
problems, no other singularities appear anywhere in the complex A-plane. (For the 
HC(B) and HC(S) problems, we find non-physical singularities in the complex plane 
further from the origin than the physical singularity at A = 1 .  These singularities cause 
the oscillations mentioned earlier, which are smoothed-out by taking the ‘appropriate 
extrapolants’.) 

The exponent g, may be estimated by returning to the series coefficients m,, which 
as we have seen approach 1/6, as n + 00. The rate of approach depends on the confluent 
singularity (see Gaunt and Sykes 1972). It follows from (2.2) that 

where 

A, = gpFp/U 1 - g,) (2.4) 
and T ( x )  is the gamma function. Taking 6, = 18, a sequence of estimates for g, and A, 
can be obtained by fitting (2.3) to successive pairs of coefficients m, and m,-l. These are 
presented in table 2 for all the bond problems and the T(S) problem. Corresponding 
sequences for the other problems are not very useful since large uncertainties are 
introduced through uncertainties in pc and hence in m,. On plotting the sequences for g, 
in table 2 against n and assuming they have a common limit, a value around 

g,=0*75*0-05 (2.5) 

A, = 0.06 f 0.0 1 (2.6) 

is suggested. Similarly, for A, we estimate 
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Table 2. Successive estimates for g, and A, assuming 6, = 18. 

g, A, 

n T(B) SQ(B) HC(B) T(S) T(B) SQ(B) HC(B) T(S) 

2 0.2925 0.3251 0.5017 0.3251 0.0415 0.0399 0.0410 0.0399 
3 0.5364 0.4612 0.5070 0.4612 0,0492 0.0439 0.0412 0.0439 
4 0.5513 0.6840 0.2329 0.4939 0.0500 0,0561 0.0305 0,0455 
5 0.6040 0.6104 0.6794 0.5451 0.0538 0.0506 0.0566 0.0488 
6 0.6040 0.6477 1.2431 0.5680 0.0538 0.0537 0.1401 0.0507 
7 0.6231 0.6465 0.9518 0.5877 0,0556 0.0536 0.0831 0.0525 
8 0.6397 0.6540 0.3315 0.6022 0.0575 0.0544 0.0249 0.0540 
9 0.6506 0.6804 0.4848 0.6137 0.0588 0.0575 0.0342 0.0553 

10 0.6767 0.9835 0.6227 0.0570 0.1023 0.0564 
11 0.6832 0.9372 0.6299 0.0579 0.0920 0.0573 

13 0.6876 0.6362 0.6407 0.0585 0.0448 0.0589 
14 0.8034 0.6448 0.0688 0.0595 
15 0.8042 0.0689 
16 0.7290 0.0562 
17 0.7 186 0.0546 

12 0.6886 0.6124 0.6359 0.0586 0.0422 0.0582 

in all cases; A, is not expected to be a dimensional invariant but the sequences are not 
sufficiently regular for us to discern the relatively small differences between problems. 
Using (2.5) and (2.6) to calculate F, from (2.4), we find 

Fp= 0.3 f0.1.  (2.7) 
Clearly we do not claim for these calculations the high reliability usually accorded series 
estimates of critical parameters; instead the above values of g,, A, and F, should be 
regarded as order of magnitude estimates only. The quite large value for F,, as 
compared to the corresponding Ising amplitude F (Gaunt and Sykes 1972), is consistent 
with our assumption that the slow convergence associated with the basic series can be 
attributed solely to the confluent singularity. 

Finally, we have used the standard techniques (Gaunt and Sykes 1972, Gaunt and 
Guttmann 1974) to estimate .the amplitude E, of the leading singularity assuming 
6 ,  = 18. The residues at the pole close to A = 1 of the Pad6 approximants to the Pi8p 
series have proved the most useful, but convergence is again rather slow by any of the 
methods. We find the following order of magnitude estimates: 

1 a095 f 0.005 HC(B) 

Ep = 1.096 * 0.002 SQ(B) (2.8) i 
and 

1.08 f 0.01 5 HC(S) 

1.09 f 0.025 SQ(S) 

SQM(S) i 1.1 1 * 0.02 HCM(S) . 

E,= 1*104*0*006 T(S) 

1 * 105 f 0.025 
(2.9) 
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A satisfactory feature of these values is their monotonic variation with lattice coordina- 
tion number. The large uncertainties for the site problems (with the exception of the 
triangular lattice) allow for the uncertainties in pc.  Taking the central value of pc for 
these lattices leads to uncertainties in Ep of the same order as for the triangular lattice. 

3. Condusions 

We have analysed series expansions for the in-field percolation probability at the 
critical probability pc.  As the field ,f approaches zero (or A+l-), the dominant 
asymptotic behaviour of Pc(A) is described by (1.8) with amplitude E,  given by (2.8) or 
(2.9). The critical exponent S ,  appears to be a dimensional invariant with a value given 
by (2.1). Earlier work by Essam and Gwilym (1 97 1) based upon shorter series gave 
6,s 10, while an analysis by Stauffer (1975) of extant Monte Carlo results indicates 
l/Sp = 0.0*0.1. More recently, Enting has considered the q-state random cluster 
model (Fortuin and Kasteleyn 1972) for which a q + 1 limit is equivalent in zero field to 
the bond percolation problem. It should be noted that the field is introduced into the 
random cluster model in a manner different to (1.1) but this is not expected to affect the 
critical exponent. Preliminary series estimates by Enting (private communication) 
indicate a value consistent with (2.1) only with larger uncertainties (due to shorter 
series). 

Our estimate of 8, is in good agreement with that predicted from the scaling law 
(Essam and Gwilym 1971) 

8, = 1 + (Yp/Pp) (3.1) 

7, = 2.43 * 0.03 (3.2) 

pp=O-138*0.007 (3.3) 

SP= 18.6* 1.2 (3.4) 

using series estimates of yp and p,. For the mean size exponent we have from I1 

and for the percolation probability exponent 

from IV. Substituting into (3.1) gives the scaling prediction 

as compared to the direct series estimate (2.1). 
It is our present opinion that 

a,= 18 (3.5) 
3 p = I  YP = 2i, P 73 

is the simplest set of rational exponents which is most consistent with all the available 
data and which satisfy the scaling law (3.1) exactly. It will be interesting to see if the 
three-dimensional data are consistent with 8, being an even integer, as it seems to be in 
two dimensions and is for the Bethe lattice for which 6, = 2 (Essam and Gwilym 1971). 
A similar result-but with odd integers-holds for the king model where apparently 
S = 15,5 and 3 for two-dimensional, three-dimensional and Bethe lattices, respectively 
(Gaunt 1967, Gaunt and Sykes 1972). 

According to scaling theory (Essam and Gwilym 1971, Dunn et a1 1975a) 

A P  = P p  + Yp, Yp = (2Pp + rp)/d (3.6) 
where Ap and Y, are ‘constant gap’ exponents for the moments of the cluster size 
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distribution and the pair connectivity, respectively, and d is the dimensionality. Using 
the numerical estimates (3.2) and (3.3) we obtain the scaling predictions 

A,=2*57*0*04, vp= 1*35*0*02, (3.7) 
which are in good agreement with the direct series estimates (Essam et a1 1976, Dunn et 
a1 1975b) 

A, = 2.62 f 0.08, vp= 1-34ztO.02. (3.8) 
We have chosen to calculate A, and up from the pair (p,, 7,) rather than (p,, 6,) or 
(y,, a,), since the uncertainties in the predicted exponents are found to be the smallest 
in this case. Note that the simple rational exponents (3.5) lead to 

(3.9) vp= lfi= 5 1.3571 . . . A,=2$=2*5713.. . , 
which lie well within the uncertainties of the direct estimates (3.8). 

Essam et a1 (1976) and Dunn et a1 (1975b) have pointed out that their direct series 
estimates of y,, vp and A, are consistent with y / v ,  A/v and y/A having the same value 
for percolation and the king model. If correct, this result would be a further example of 
‘new’ or ‘weak’ universality (Suzuki 1974). However, we would then expect 6,= 6 
which we have shown to be most unlikely. Even if the uncertainties in our estimate (2.1) 
are over-optimistic, it is very difficult to believe that the plots shown in figure 1 approach 
15 as n + m .  

We have seen that the dominant singularity (1.8) is modified by a confluent 
correction term of the form (2.2) with a fairly large amplitude F, given by (2.7). The 
correction exponent g ,  is probably a dimensional invariant with a value close to (2.5). 
As shown below, such a value is not in accord with the analogous quantity for the simple 
Ising model (Gaunt and Sykes 1972). From Domb’s generalized equation of state 
(Domb 1971, Domb and Gaunt 1971) 

g = l/PS (3.10) 

for the king model. However, as shown by Gaunt and Baker (1970), the amplitude of 
this correction term is probably zero-certainly very small. The next correction term 
has non-zero amplitude and corresponds to 

g =  1-(1/6). (3.11) 

Usin (3.5) to calculate the analogous exponents for the percolation problem, we find 
g,  = ig = 0.388 . . . and g, = % = 0.944 . . . corresponding to (3.10) and (3.1 1) respec- 
tively. Both of these values seem ruled out by the series estimate (2.5). An adequate 
explanation of this exponent’s value must await further theoretical developments. 
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